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An analytical theory is presented which permits the calculation of  transient effects at widely-separated 
double channel electrodes. In particular the current response of  a downstream (detector) electrode to a 
potential leap at an upstream (generator) electrode is established and theoretical predictions are found 
to be in excellent agreement with experiments carried out  using the oxidation of  N,N,N~,NCtetra - 
methyl-phenylenediamine in aqueous solution at a platinum double channel e lec t rode.  

1. Introduction 

The double-channel electrode, pioneered by Gerischer 
[1], is a valuable approach to the study of inter- 
mediates and products of electrode reactions. The 
basis of such investigations is as follows. A solution 
species A, passes over the upstream generator 
electrode where it is oxidatively or reductively 
transformed to a species B: 

A •  ,~ B 

The species B is then transported to the downstream 
detector electrode where it is analysed ampero- 
metrically, generally via reduction or oxidation back 
to A. The experiment is quantitatively characterized 
by the so-called 'collection efficiency', N, given by 

N = Ildet/lgenl (1) 

where Igen and Idet are  the currents at the generator 
and detector electrodes respectively. Whilst the varia- 
tion of the steady-state collection efficiency with 
electrolyte flow rate has been used to characterize 
the homogeneous chemistry of B, it has recently 
been pointed out [2, 3] that transient measurements 
using the double channel geometry can provide 
additional and unique information if the detector 
electrode current is monitored as a function of time 
following a potential leap on the upstream electrode. 
In particular, the ability to probe the diffusion 
coefficients of electrogenerated species and also 
heterogeneous kinetics at solid/liquid interfaces was 
noted. The latter ability was exploited to characterize 
the nature of electrolytic processes occurring at the 
surface of porous silicon electrodes [3]. 

The aim of this paper is to develop analytically the 
theory of transient behaviour at the double channel 
electrode; it complements the computational 
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approach to this problem presented elsewhere [2] 
and is directly applicable for cell geometries and 
relative electrode placements for which computations 
are particularly CPU-expensive. The basis of our 
treatment assumes that the channel flow cell contains 
an electrode of width d, where d is greater than the 
depth (height) of the channel, h. This assumption 
simplifies the transport problem to one of two dimen- 
sions, as shown schematically in Fig. 1. Previous 
analytical work on double channel electrodes has 
been concerned with the deduction of steady-state 
collection efficiencies [4, 5] and has assumed the limit- 
ing case when the thickness of the diffusion layer is 
significantly lower than height h of the channel: 

Vfh 
D/2----d >> 1 (2) 

where Vf is the volume flow rate, D is the diffusion 
coefficient of species B and/2 is the total characteristic 
length (/2 = [gen q- [gap ~- [det) shown in Fig. 1. When 
Condition 2 is fulfilled, the velocity near the wall 
can be linearized [6] - the L6v6que approximation 
[7] - and analytical solution is facilitated [6]. In the 
other limiting case when the parameter in the left 
hand side of Condition 2 is of the order of unity 
numerical solutions are essential [2, 3, 8, 9]. In the 
present paper we analyse the case of widely separated 
electrodes (/gap))/gen,/det) which is easily experi- 
mentally realizable for conventional double electrodes 
as well as for microelectrode arrangements. In this 
situation Condition 2 allows us to use the L~v~que 
approximation in the region of the gap and so obtain 
simple analytical expressions for the detector electrode 
transient resulting from a potential leap at the 
upstream electrode, including the time delay of the 
current Idet after switching o n  Igen and the charac- 
teristic slope of the detector electrode chronoampero- 
metric transient. The solution presented is general and 
not restricted to certain Peclet numbers so that axial 
diffusion effects are taken into account, where appro- 
priate. Moreover, the precise nature of the upstream 
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Fig. 1. Schematic diagram of a double channel electrode which defines the coordinate system used and the various cell parameters. 

electrode and the reaction there has no influence on 
the transient collection efficiency which, under the 
conditions assumed above, is found to be insensitive 
to the reversible or irreversible nature of the electrode 
reaction, the applied potential, or the electrode length. 
Additionally it is shown that the approach can be 
extended to more complicated systems using, by way 
of example, the situation when the species B under- 
goes first order homogeneous reactions. Finally 
some particular cases, where Condition 2 is not 
applicable, are discussed. 

2. Theory 

2.1. Statement o f  the problem 

The transport process in the double-channel electrode 
cell can be subdivided into three stages: 

(i) Transport of species A towards the surface of the 
generator electrode and then the transport of the 
product of the electrochemical reaction B away from 
the generator electrode region. 
(ii) Transport of B through the gap. 
(iii) Transport of B towards the surface of the detector 
electrode. 

Because the gap is much longer than electrodes 
(Igap >> Igen,ldet), the timescale of the second stage is 
much greater than of the others. Therefore, two signifi- 
cant simplifications can be made. First, the pertinent 
convection-diffusion equations can be solved separately 
for each stage, even if axial (x-direction) diffusion for (i) 
and/or (iii) is taken into account. Second, the transient 
behaviour of the system is determined only by transport 
through the gap; we can therefore use steady-state 
solutions in the vicinity of the two electrodes. 

In the following we employ nondimensional 
variables for length and time, and adopt the notation 
that the corresponding dimensional parameters will 
be given a 'hat' as defined below. Thus real time is 
represented by i while t represents dimensionless 
time. The two parameters are related by the equation 
t = cri, where 

6Vf 
~7 = h2 d (3) 

Physically the parameter ~ describes the convective 
flow near the cell wall through the equation Vx = crfi 

where Vx is the axial solution velocity through the 
cell. The quantity (D/e)1/2 is used as a measure of dis- 
tance to create the following dimensionless variables: 

X = 2 ( ~ / D )  1/2 (4a) 

y = ~(~r/D)l/2 (4b) 

L = L(cr/D)l/2 (4c) 

ls = 2~ (~7/D)1/2 (4d) 

c~ = (gen, det, gap) (4e) 

where the Cartesian coordinates 2 and p are defined in 
Fig. 1. In the above notation the Peclet number, asso- 
ciated with the length [ is l 2. The concentration of A 
upstream of the generator electrode, [A]bulk, is used 
to normalise concentrations and a dimensionless 
current is defined as follows: 

i (5) 
[A]bulkFD 

where F is the Faraday constant. 
Subproblem (i), namely, steady state convection- 

diffusion transport to a channel electrode, has been 
well studied as follows [12]: 

(a) For high Peclet numbers, 12>> 1, the classic 
L6v~que solution is valid [6]: 

31/3 12/3 . 
I ( l )  - 2F(4/3) I>> 1 : (6) 

(b) For small Peclet numbers, l 2 << 1, Ackerberg et al. 
have derived [10] the expression 

71" 
l(1) = log(4//) + 1.0559 l << 1 (7) 

Note that when A and B have different diffusion 
coefficients it is appropriate to use D A in setting up 
the dimensionless variables in Equations 4 and 5. 
Otherwise if D B is selected the right-hand sides of 
Equations 6 and 7 must be multiplied by the factor 
(D~/DA) for the case of the current flowing at the 
generator electrode. 
(c) For intermediate Peclet numbers, 12~ 1, the 
problem has been solved numerically by Newman 
[11]. No satisfactory analytical approximations exist 
[12]. 
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Subproblem (ii) is described by the following 
convective-diffusion equation written in terms of 
the dimensionless concentration e (= [B]/[A]bulk) of 
species B: 

Oc OZe Oc 
Ot - Oy 2 Y Ox (8) 

in the zone t > 0 ,  y > 0 ,  x > 0 .  The initial and 
boundary conditions are 

c = 0 at t = 0 (9) 

c = 0 at x = 0 (10) 

c = 0 at y + oe (11) 

Oc 
0--y = Igen(5+(X) at y = 0 (12) 

where a+(x) is the Dirac Impulse function. Boundary 
conditions 10 and 11 correspond to the absence of 
species B in bulk solution. Boundary condition 12 
indicates that the only source of B is a generator 
electrode of small size located at the origin of the 
coordinate system which, after time t = 0, generates 
a steady current /gen. Solution of the system of 
equations, Equations 8-12, gives the concentration 
distribution c( t ,x ,y)  and, in particular, c(t,L,O) 
near the electrode. 

Solution of subproblem (iii) is analogous to that of 
subproblem (i). The thickness of the diffusion layer at 
x ~ L is (assumed) far in excess of the length of 
the detector electrode so that the detector has no 
influence on the concentration distribution within 
the diffusion layer. So, in effect, the detector is situated 
in a solution of dimensionless concentration c(t, L, 0). 
Consequently the collection efficiency is 

N(t ,  L) = I(Idet) c(t, L, O) 
Igen 

(13) 

6 or 7 as where I(ldet) is given by Equation 
appropriate. 

To find the final expression for the transient 
behaviour of N we next solve Equations 8-12. This 
is accomplished in the following section. 

2.2. Solution of  the transport equation in the gap region 

Double Laplace transformation of Expression 8 first 
with respect to t (transform variable s) and second 
with respect to x (transform variable p) gives 

02~ 
s~ -- 02y py~ (14) 

where ~ denotes the double-Laplace transformation of 
variable c. The solution of Equation 14 which satisfies 
the boundary and initial conditions, Conditions 9-11, 
is of the form: ! 

: g = c~Ai[pl/3(y + s/p)] (15) 

where Ai[z] ~ der/0tes the Airy function [13] and the 
constant c~ is!obtained from Laplace transformation 

of Equation 12: 

0~ Igen 
- a t  y = 0 ( 1 6 )  

0y s 

Combining Equations 15 and 16, we obtain the 
concentration distribution at y = 0 

= ~ f [ s p  -2/3] (17) 

where 

Ai[z] (18) 
f [ z ] -  Ai'[z] 

To find the inverse Laplace transformation of 
Equation 17 we substitute the Taylor series for f[z]. 
Now from the definition of the Airy function, 
Ai"[z] = zAi[z], we can obtain 

f '[z] = zf2[z] - 1 (19) 

which allows us to develop the required series: 

f[z] ~f[0]  + zf'[O] + z2f"[01/2 =f[0]  - z + z2f2[0]/2 

(20) 

where 

f[0] = 31/3F(1/3)/r(2/3) (21) 

Substituting Equations 20 and 21 into Equation 17 
and taking the formal inverse Laplace transforma- 
tions with respect to time and x, we obtain at y = 0: 

__ Igen 7r2 X2 / 3 Ig enx-2/3 Igen~+ (t) -+ 
c 31/3p(2/3) 32/3F2/3(2/3 ) 6+(t) 

(22) 

The'first term in Equation 22 corresponds to the 
steady-state concentration. Substituting it into 
Equation 13 we obtain the steady state current 
efficiency No 

L-2/3 
N O = I(ldet) 3~/3F(2/3) (23) 

where I(ldet) is given by Equation 6 or Equation 7 as 
appropriate. 

We turn next to the second and third terms in 
Equation 22 and note that the physical significance 
of these terms is obscure until Expression 23 has 
been suitably integrated, as follows. To this end we 
idealize the detector electrode response by the step- 
form shown schematically in Fig. 2(a) which is 
characterized by the point t = to. The integration of 
the first two terms of Equation 22 with respect to 
time gives us the time to when the concentration at 
first time becomes nonnegative (e = 0): 

to = 31/3I'(2/3)L 2/3 (24) 

The mathematical background to this derives from 
the time-dependence of the total charge Q(t) = f~ dt 
Idet(t) passing through the detector electrode which 
has the form of the smooth curve starting at zero 
sketched in Fig. 2(b). The two term approximation 
to Equation 22 gives the straight line to which the 
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Fig. 2. (a) A schematic detector electrode current transient resulting 
from a potential step at the generator electrode. (b) The charge flow- 
ing at the detector electrode as a function of time and obtained 
through the integration of the curve shown in Fig. 2(a) and 
assuming that the shaded zones in that figure are equal in area. 

curve in Fig. 2(b) tends at long time t >> 1; from this 
the value of to is readily deduced. 

To investigate the shape of the curve Idet(t) quanti- 
tatively we idealize the transient by the form shown in 
Fig. 3 in which the current Idet is zero up to time ti, 
then changes linearly to the steady state value, which 
is attained at time t2. Note that this approximation is 
characterized by three parameters: the steady state 
current, the time delay to and the rate of current 
change (transient slope) near t = to. We integrate 
Expression 22 twice with respect to time to obtain 
f o r x =  L 

Igen Tr2 X 2/3 
Igen t 4- 32/3p2/3 (2/3) 

(25) 

j,0d, ,2 
31/3s 2 

For comparison the test curve (Fig. 3) is also inte- 
grated twice. The initial segment 0 < t < tj is 
unchanged by this operation, while the straight line 
t > t 2 becomes part of the parabola in Equation 25. 

"13 I 

r I 1 m _  

0 fl to t2 f 
Fig. 3. The idealised transient used to model the schematic 
experimental transient shown in Fig. 2(a). 

The segment between points tl and t 2 is transformed 
into a cubic curve, which meets the already identified 
curves at the points tl and t2. Moreover, at the points 
t = tl and t = t 2 the derivatives and the second deriva- 
tives of the function given in Equation 25 must be 
continuous. These six conditions give us a system of 
algebraic equations which can be solved to give the 
following simple expression for the chronoampero- 
metric curve between points tl and t2: 

Idet(t) = Ia~t(t---' o0) + ~/27iq/3~-377r-4/8 

(26) 

Expression 26 is valid only while the term in the 
square brackets in the right side is within the interval 
between 0 and 1. 

2.3. Theoretical results and discussion 

The time dependence of the collection efficiency, N, 
after calculation of the constants in Expressions 22, 
24 and 26 is 

N = 

0 at 0 < t < 0.55 t o 

No 1.1131t/to-0.6131 at 0.55 t o < t < 1 . 4 5 t o  

1 at t > 1.45 t o 

(27) 

where t o is the time when N reaches half of its steady 
state value, 

to = 1.9553 L 2/3 (28) 

and N0 is the steady state collection efficiency 

No = 0.5114 L-2/3I(Idet) (29) 

In the two limiting cases of high and small Peclet 
numbers Expression 29 can be simplified, taking into 
account either Equation 6 or 7, that is, 

N O = ~ - \ ' - ~ j  ~ 0.4135 ldet >> 1 (30) 

1.607 L -2/3 
N 0 =  /de t < < l  (31) 

2.442 -- log /(let 

Expressions 27-31 are given in dimensionless form. It 
is, however, useful to consider how they depend on 
various experimental parameters. First, the con- 
centration in the diffusion layer and Idet are both 
proportional to the current flowing at the generator 
electrode. It follows therefore that the collection 
efficiency does not depend on a size of the generator 
electrode, the reversibility of reaction on it, the bulk 
concentration of substance A, or its diffusion coeffi- 
cient DA. These features follow directly from the 
assumption lgen <</gap ~ L. For a Peclet number 
/Jet >> 1 it is possible to neglect axial diffusion in the 
vicinity of the detector electrode and the steady state 
collection efficiency No depends only on the ratio of 
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the detector electrode length /det and the gap length 
/gap ~ L. Under these conditions it is independent of 
the solution flow rate and or the diffusion coefficient. 
We note that Expression 30 can be obtained as a limit- 
ing case of Matsuda's results [4] for /det << L. In the 
opposite case of a very short detector electrode 
/2et << 1 NO becomes independent on the absolute 
values of both L and ldet as given in Equation 31. 

The time for the current Idet to reach half of its 
steady state value is given by the simple equation, 
Equation 28. According to this expression, the value 
of to does not depend on the length of the detector 
electrode or on details of the electrode kinetics on 
the detector electrode. In dimensional form it becomes 

io 1.9553(h2dL~ V3 = D -1/3 (32) 
\ 6Vf J 

The only unknown parameter in Equation 32 is the 
diffusion coefficient D of species B. Transient collec- 
tion efficiency experiments may therefore be used to 
estimate this parameter [3]; the above theory permits 
the deduction of this quantity without resort to com- 
putational modelling of the full transient as previously 
required and which is timewise prohibitively expen- 
sive in the case of widely separated electrodes [2, 3]. 

Finally, Equation 27 shows that the detector elec- 
trode jumps from zero current to its steady-state value 
rather sharply: the period of the transient behaviour 
occurs within 90% of to. Moreover, since this value 
of 90% is fixed for any system, it implies that, after 
renormalization by appropriate values of N O and to, 
all transients, N(t), are approximately identical. This 
procedure is experimentally valuable as a check on 
the applicability of the present theory - which 
requires /g~p >>/det,/g~n and~ the absence of homo- 
geneous reactions - to any real system. 

The technique of analytical solution developed in 
this paper is readily extended to some related prob- 
lems. For example, consider the problem of the 
steady-state collection efficiency in a system where 
the substance B undergoes first order homogeneous 
decomposition into an electroinactive species. The 
convective-diffusion equation for such a system is 

02C OC 
k C -  oy~ Y Ox (33) 

where k is the dimensionless rate constant for the 
reaction: k =/~/~r. 

To solve Equation 33 with the boundary and initial 
conditions (9-12) we Laplace transform with respect 
to the coordinate x only (transform variable p) to 
obtain what is effectively Equation 14, except that 
the variable s is now replaced by k. The transformed 
boundary condition (Equation 12) becomes 
0 C / @  = /gen at y = 0 and Laplace transformation 
for the concentration at y = 0 gives 

= IgenP-1/3f[sp -2/s] (34) 

Substituting the approximate expression (:Equation 
20) for f[z] into Equation 34 and taking the inverse 

Laplace transformation, we obtain the final expres- 
sion for the collection efficiency in a form very similar 
to Equation 22: 

-- [ L-2/3 32/3r2/3 (2/3)7r2L2/3 1 N2 --= Idet 131/3~-/3 ) k 4- k 2 (35) 

The subscript 2 on N2 denotes that terms in the expan- 
sion off[z] were taken into account up to and includ- 
ing the second power. Note that the first term in the 
right-hand side of Equation 34 is No. Equation 35 pro- 
vides a basis for the experimental estimation of k. In 
the case of slow reactions, (k /L  2/3) << 1, and the last 
term in the equation can be omitted so that 

( 6Vf "~ 2/3D1/3 N O - N2 (36) 
/~ = 0.5114 \h-~dLJ No 

This expression allows us to find/~ provided the diffu- 
sion coefficient of B is known, for example from data 
for to. 

Finally, we consider the situation when Condition 2 
breaks down, that is when the thickness of the diffu- 
sion layer becomes comparable with half-height of 
channel as happens at very slow flow rates. For suffi- 
ciently slow flow, Vfh << DLd, and so-called thin- 
layer conditions operate such that the steady-state 
concentration of B is uniform throughout the channel 
and depends only on Igen and the channel size h: 

c = Igen/(hv/~/D) 

The collection efficiency No may then be calculated 
from 

N O = 0.5114 /(/det) (37) 

instead of Equation 29. 

3. Experimental details 

The channel flow cell and flow system have been 
described in full detail previously [13, 14]. In brief, 
experiments were carried out in a flow cell fabricated 
in perspex such that the channel was 6 cm long, 0.6 cm 
wide and approximately 0.1 cm deep. The exact depth 
of the cell was determined from a plot of the transport 
limited current versus (flow rate) 1/3 for the one- 
electron oxidation at the generator electrode of 
TMPD which has a known diffusion coefficient 
6.3 x 10 -6 cm -2 s -1 [15]. The cell coverplate bore the 
generator and detector electrodes which were 
constructed from strips of platinum foil (99.95%, 
Goodfellows, Cambridge, UK) 0.0255mm thick. 
The electrodes were cemented to the coverplate using 

Table 1. Dimensions of the cell used in the double channel experiments 

Generator electrode 
Gap length 
Detector electrode 
Cell height 
Channel width 

Length 0.107 cm, width 0.417 cm 
1.386cm 
Length 0.112 cm, width 0.423 cm 
0.0882 cm 
0.600 cm 
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Fig. 4. An experimental detector electrode transient measured using 
a flow cell of the geometry specified in Table 1 and the flow rate 
given in the text. 

Araldite. Before use the electrodes were polished to a 
mirror finish using progressively finer diamond lap- 
ping compounds (Engis, Maidstone). The smallest 
diamond grit used was 0.25 #m. The dimensions of 
the electrodes and the gap between then were 
measured with a travelling microscope (see Table 1). 
The channel cell was formed by clamping the cover- 
plate over the channel. A silver wire pseudo-reference 
electrode was locate UPstream of  the channel and a 
platinum gauze counter electrode was situated 
immediately downstream. 

Solution deoxygenated with argon was gravity fed 
to the cell from a glass reservoir via several metres 
of 1.5 mm bore glass tubing. Flow rates over a wide 
range (10 .4 to  10 1 c m  3 s-l)  were attained by switch- 
ing between capillaries with different internal bores 
and by varying the height of the reservoir relative to 
the cell outlet. The cell and approximately 1 m of 
tubing were located in an air thermostatted box at 
25 -4- 0.5 ~ 

TMPD was supplied by Aldrich (Gillingham, UK,  
98%) and KC1 by BDH (Poole, UK, AnalaR). 
Solutions were made up with Elgastat (High 
Wycombe, Bucks) UHQ grade water with a resistivity 
not less than 18 Mf~ cm. 

4. Experimental results and discussion 

Double channel experiments were conducted using 
4 x 10 -3 M N,N,N',N'-tetramethyl-p-phenylenedia- 
mine (TMPD) in aqueous solution containing 0.2M 
KC1. Both the detector and generator electrodes 
were constructed from platinum at which TMPD is 
known [15] to undergo a reversible one-electron 
oxidation to a stable radical cation. 

Experiments were conducted in which the potential 
of the generator electrode was stepped from a value at 
which no current flowed (-0.20 V vs Ag) to one corre- 
sponding to the transport limited oxidation of TMPD 
(0.26 V vs Ag): 

TMPD - e-  ~,~ TMPD +" 

The detector electrode potential  was held through- 
out at a potential of  -0 .13 V (vs Ag) corresponding 
to the transport  controlled reduction of  the radical 
cation, T M P D  +" , back to the parent  TMPD.  A typi- 
cal detector electrode transient is shown in Fig. 4 
which relates to a flow rate of  0.0412cm 3 s -1. The 
time, to, for the transient to reach half of  its 
steady-state value was recorded as a function of  
flow rate and the dependence of  to/S on the volume 
flow rate, gf /cm 3 s -1 is shown in Fig. 5 where the 
x-axis is V~ 2/3 a s suggested by Equation 32. The 
excellent linear correlation shown is exactly as pre- 
dicted theoretically. Moreover,  using the known 
value for the diffusion coefficient of  TMPD,  
D = 6 . 3  x 10-6cm2s -~, [15] the slope of  the plot 
shown in Fig. 5 is predicted to be 1.23 from Equa- 
tion 32 i f /~  is intepreted as the distance between 
the middle of  detector and generator electrodes. 

9o f x 
8o 
70 

6G 

,p, sc 
.,_o L,0 

30 

20 

10 

I I I I I I 2o 30 so 60 70 
(Vf/cm 3 sl)  -2/3 

Fig. 5. Analysis of experimental detector electrode transients according to the Equation 26. 
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The value obta ined  by fitting a least squares  slope to 
the da ta  shown was 1.21 which is in excellent agree- 
ment  with the theoret ical  predict ion.  

We next return to the illustrative experimental 
detector current transient shown by the solid line in 
Fig. 5. I t  is interesting to compare  the shape o f  this 
with that  predicted by the simplified theory sum- 
marized in Equat ion  26. This is shown as the dashed 
line in Fig. 5. The theoretical line is seen to be in 
very good  agreement  with experiment. Moreover ,  
the experimental transient is seen to be closely sym- 
metrical about  the point  to (as centre o f  inversion) 
so that  the approximat ion  I ( t o ) =  0 . 5 I ( t ~  co) is 
seen to be an adequate  operat ional  definition o f  the 
point  to, which is strictly defined in Fig. 2(b). 

5. Conclusions 

The analytical theory developed is seen to be in 
excellent agreement  with experimental measurements  
made at widely separated double channel  electrodes. 
The simple relationships given in Equat ion  27 
should facilitate the easy analysis of  experimental 
transient data  wi thout  the need for  computa t ional  
modelling. 
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